Selective regulation of protein kinase C isoenzymes by oleic acid in human platelets.
نویسندگان
چکیده
Cis-unsaturated fatty acids activate soluble protein kinase C (PKC) in vitro and in intact platelets. The following studies were conducted to determine the effects of oleate on individual isoenzymes of PKC in human platelets. Human platelets were found to contain predominantly PKC alpha, beta I, beta II, and delta with minor immunoreactivity for PKC epsilon, zeta, and eta. In intact platelets, sodium oleate caused a time-dependent redistribution of PKC alpha, beta II, and delta from cytosol to membrane fractions with little effects on PKC beta I. On the other hand, PMA and thrombin induced translocation of all four isoenzymes of PKC. In vitro, oleate partially activated (50% of Vmax) purified calcium-dependent PKC (alpha, beta I, and beta II) with an EC50 of 50 microM whereas it fully activated (100% of Vmax) purified calcium-independent PKC (predominantly delta) with an EC50 of 5 microM. The selective effects of oleate on PKC isoenzymes were investigated in platelet cytosol which contains endogenous PKC and its physiologic substrates. Under these conditions, oleate potently activated calcium-independent PKC causing the phosphorylation of the 40-kDa substrate. Activation of calcium-dependent isoforms occurred only at higher concentrations of oleate. Thus, oleate activates multiple isoenzymes of PKC with predominant effects on calcium-independent PKC.
منابع مشابه
Identification, partial purification, and characterization of a novel phospholipid-dependent and fatty acid-activated protein kinase from human platelets.
A novel lipid-dependent protein kinase in human platelets was partially purified and characterized. This enzyme was calcium-independent and was selective for phosphatidic acid as a cofactor/activator with initial activation observed at approximately 2 mol % and peak activity achieved at 4 mol % phosphatidic acid. In the presence of phosphatidylserine, enzyme activation was observed with concent...
متن کاملStimulatory antibody-induced activation and selective translocation of protein kinase C isoenzymes in human platelets.
A novel stimulatory monoclonal antibody (Mab) termed Mab.F11 induces granular secretion and subsequent aggregation of human platelets. Mab.F11 recognizes a unique 32 and 35 kDa protein duplex on the platelet membrane surface, called the F11 receptor; binding of Mab.F11 to its receptor results in increased intracellular phosphorylation of P47, the known protein kinase C (PKC) substrate pleckstri...
متن کاملOleic acid promotes changes in the subcellular distribution of protein kinase C in isolated hepatocytes.
The effect of oleate on the subcellular distribution of protein kinase C (PKC) was studied in isolated hepatocytes and in perfused rat liver in the presence of physiological concentrations of serum albumin. A time- and dose-dependent translocation of PKC from the cytosol towards the membranes was observed at oleate concentrations that fell within the range of concentrations reached under severa...
متن کاملInactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملProtein Targeting Interactions in Signalling Processes
Introduction Protein kinase C (PKC) is a family of phospholipiddependent serine-threonine kinases that regulate cell growth and differentiation (reviewed in [ 1 4 ) . PKC is also the major intracellular receptor for tumour-promoting phorbol esters [ 1-31. Molecular cloning and biochemical separation of the individual gene products has led to a classification system for the PKC isoenzymes based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 268 7 شماره
صفحات -
تاریخ انتشار 1993